Siegel Modular Forms of Degree Three and the Cohomology of Local Systems

نویسندگان

  • JONAS BERGSTRÖM
  • Torsten Ekedahl
چکیده

We give an explicit conjectural formula for the motivic Euler characteristic of an arbitrary symplectic local system on the moduli space A3 of principally polarized abelian threefolds. The main term of the formula is a conjectural motive of Siegel modular forms of a certain type; the remaining terms admit a surprisingly simple description in terms of the motivic Euler characteristics for lower genera. The conjecture is based on extensive counts of curves of genus three and abelian threefolds over finite fields. It provides a lot of new information about vector-valued Siegel modular forms of degree three, such as dimension formulas and traces of Hecke operators. We also use it to predict several lifts from genus 1 to genus 3, as well as lifts from G2 and new congruences of Harder type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

Siegel Modular Forms of Genus 2 and Level 2: Cohomological Computations and Conjectures

In this paper we study the cohomology of certain local systems on moduli spaces of principally polarized abelian surfaces with a level 2 structure that corresponds to prescribing a number of Weierstrass points in case the abelian surface is the Jacobian of a curve of genus 2. These moduli spaces are defined over Z[1/2] and we can calculate the trace of Frobenius on the alternating sum of the ét...

متن کامل

Theory of the Siegel Modular

In this paper, we discuss the theory of the Siegel modular variety in the aspects of arithmetic and geometry. This article covers the theory of Siegel modular forms, the Hecke theory, a lifting of elliptic cusp forms, geometric properties of the Siegel modular variety, (hypothetical) motives attached to Siegel modular forms and a cohomology of the Siegel modular variety. To the memory of my mother

متن کامل

2 Jae - Hyun

In this paper, we discuss the theory of the Siegel modular variety in the aspects of arithmetic and geometry. This article covers the theory of Siegel modular forms, the Hecke theory, a lifting of elliptic cusp forms, geometric properties of the Siegel modular variety, (hypothetical) motives attached to Siegel modular forms and a cohomology of the Siegel modular variety. To the memory of my mother

متن کامل

GALOIS REPRESENTATIONS MODULO p AND COHOMOLOGY OF HILBERT MODULAR VARIETIES

The aim of this paper is to extend some arithmetic results on elliptic modular forms to the case of Hilbert modular forms. Among these results let’s mention : − the control of the image of the Galois representation modulo p [37][35], − Hida’s congruence criterion outside an explicit set of primes p [21], − the freeness of the integral cohomology of the Hilbert modular variety over certain local...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014